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Critical behavior of efficiency dynamics in small-world networks
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Some dynamical processes in a small-world network shows a critical transition at a finite digpafahe
network, in contrast with the geometrical properties that exhibit the critical behavity=a®. Although it has
been pointed out in previous works that the transition is related to the structural properties of the network, it is
still not very clear why the transition occurs a&t+#0. In this paper we present a simple social model of
efficiency dynamics in small-world networks, which also shows a transitiaf.2t0. We obtain the critical
point with ¢.~0.098 from the finite-size analysis. It is found that both the geometrical properties of the
network and the specific dynamical characters of the model contribute to the critical transition. This work is
useful for understanding this kind of transition occurring in many dynamical processes in small-world net-
works.
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I. INTRODUCTION guished from the transition occurring &t=0. Kuperman
and Abramson have studied an epidemiological model in a
Many social, biological, and communication systems carsmall-world networ 27]. It shows that there exists a transi-
be cast into the form of complex networks,2]. Various tion from a fluctuating epidemic state of low infection to a
models have been developed in order to describe the struéelf-sustained oscillation one at a finite valuedaf Zanette
ture and properties of these networis-6]. Among these has studied the critical behavior of rumor propagation in a
models, the small-world network, which was introduced bySmall-world network[28]. The transition occurs between a
Watts and Strogati4,5], has recently attracted a great deal '€9ime where the rumor “dies” in a small neighborhood of
of attention[7—12]. The small-world network is based on a its origin and a regime where it spreads over a finite fraction
locally connected regular lattice in which a fractignof the  ©f the whole population. In a very recent paper by our group,

links between neighboring sites are randomly replaced puve have also found that there exists a transition from a
y )éparse-inactive state to a dense-active one of “life” at a finite

new random links, thus creating Iong-range_ shorteuts. Pa;gisordew in a small-world networK29]. All these dynami-
rameter can be used to characterize the disorder degree qfy processes in a small-world network all show a critical
the network. The small-world model captures two SpecifiCygngition atg,#0. Why does the transition take place at an
features of real ngural, social, .and technologlca_l networ'_(?htermediate(ﬁ value but not aip=0? This is still not very
[4]. On one hand, it has a relatively large clustering coeffi-ciear up to date. In the previous works, an explanation about
cient, like regular lattices. On the other hand, it has a veryyis transition involves only the geometrical properties of the
small average shortest path through the network between amgtwork, such as the clustering coeffici¢p?—29. In a re-
two nodes, like random graphs. cent work([28], it is suggested that in addition to the geo-
Small worlds may play an important role in the study of metrical properties of the network, the specific dynamical
the influence of the network structure upon the dynamics otharacters of the studied model must be taken into account to
many social processes, such as disease spreading, formatiexplain the origin of the transition.
of public opinion, distribution of wealth, etf13—-18. Some In this paper we use a simple model that describes the
efforts have been directed to investigating the structures andynamics of efficiencies of competing agef886] in a small-
properties of small-world networks, such as scaling, percolaworld network. Agents communicate, leading to the increase
tion, etc.[19-23. It has been shown that the geometrical of efficiencies of underachievers, and the efficiency of each
properties, as well as certain statistical-mechanics propertieggdent can increase or decrease irrespective of other agents.
show a first-order transition at disorder=0 in the limit of ~ The model can also be considered as a polynuclear growth
large systemsN— = [24—26. There exists a typical length model with desorption, where the degrees of freedom are the
N* ()~ ¢~ in the small-world network, wherd is the he|ghts_ of a growm_g_mterfacESl—33. The model shows a
dimension of the basic regular lattice. For the system wittflélocalization transition from a stagnant phase to a growing
size aboveN*, the network is indeed a small world and On€e at a finite disorder of the network. By taking into ac-
below N* it behaves as a regular latti§g6]. That is, any count the specific dynamical properties of the model, we
finite value of the disorder induces the small-world behaviorPredict the appearance of this critical transition. The present

Recently, several worki27—29 have shown that some work will be useful for understanding the critical transition
dynamical processes in the small-world network exhibit the?PP&aring in many dynamical processes at a certain finite
critical transition at a finite value ofs, which is distin- disorder in a small-world network.

IIl. MODEL AND METHOD

* Author to whom correspondence should be addressed. Email ad- In the present model, the evolution of the efficiencies is
dress: xwzou@whu.edu.cn similar to that used in Ref.30], which may mimic the dy-
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namics of efficiencies of competing agents such as airlines, g ' ' ' ' ' T

travel agencies, insurance companies, etc. The efficiency of 10k a a ]
each agent is expressed as a single non-negative number. Th a

efficiency of every agent can, independent of other agents, 102} 2 -
increase or decrease stochastically by a certain amount whict 3 5,

we set equal to unity. The interactions between the agents of 107 & a 3
the population are described by a small-world network. The 104k @) o 8 ]

vertices denote the agents and the links represent the busi
ness relationships between subjects. The efficiency of an  10°F 469 :
agent can only be affected by its linked agents. As in the
Watts and Strogatz modf4], the small worlds used in this
work are random networks built upon a topological ring with

N vertices and coordination numbeK2 Each link, connect-

ing a vertex to its neighbor in the clockwise sense, is then
rewired at random, with probability, to any vertex of the
systems. With probability (¥ ¢), the original link is pre- @
served. Self-connections and multiple connections are pro-~
hibited. With this procedure, we obtain a regular lattice at

¢ =0, and progressively random graphs @ 0. The long-

range links that appear at ary>0 trigger the small-world
phenomenon. Ap=1 all the links have been rewired and

the system is similar to a completely random network. To
avoid producing disconnected graphs, we have chdsen

=2 in the present model.

Now we define the efficiency model as follows. Each ver-
texi in the network represents an agent which is character-
ized by a non-negative integér(t). This integer stands for
their efficiency level. That is, the highér is, the more ad-
vanced (efficiently speaking the agent is. We assume that
the interaction equates the efficiencies of underachievers tao
the efficiencies of better performing agents. Similar to Ref.

00 O O @I

[30], the calculated results are expected to be independent o 106 . oat
the initial conditions for the present model. For simplicity, 1 10 100
we choose the efficiency of each agh(t0)= 0 as the initial h

conditions. Monte CarléMC) simulations have been used to

study the evolution of the efficiencies of agents in the - . _ .

small world network. At each MC step, ageris selected at 2K=4 and disorder)=0.05(a), 0.175(b), and 0.30(c). Different

random and updates the agent’s efficiency level as foIIOWS'symbOIS correspond to timés= 10° (squard, 1¢° (circle), and 16
‘(triangle). The dashed line irtb) has a slope of-1.0. Note care-

(i) hy(t) —maxhy(t).hy(0)] with probability 1/(1+p+q), fully the different scales of the three plots. The size of the system is
where agenj is one of the agents that are linked to agent _1400.

This move is due to the fact that each agent tries to equal his
ggfﬁlsgtcii[)ilvteo. that of a better performing agent in order to Staychoqsep=3/2 andq=15/2, Wh,e,re the mean-field theory
(i) h;(t)—h;(t)+1 with probability p/(1+p+q). This  Predicts a growing phase of efficiencieg0].
incorporates the fact that each agent can increase his effi-
ciency, say due to innovations, irrespective of other agents.
(i) hj(t)—h;(t) — 1 with probabilityg/(1+p+q). This
corresponds to the fact that each agent can lose his efficiency We have performed extensive numerical simulations to
due to unforeseen problems such as labor strikes. Note, hovinvestigate the dynamics of efficiency in the small-world net-
ever, that sinceh;(t)=0, this move can occur only when works with sizeN ranging from 200 to 1 000 000 and rewir-
hi(t)=1. ing probabilities¢ €[ 0,1]. To reduce the effect of fluctua-
Then, the evolution of efficiency comes into the next MCtion on calculated results, for every system with digethe
step. After each MC step the “time” is increased byN1/ calculated results are averaged over hotlifferent network
such that after one time step, on the average, all agents in thiealizations and 10 independent runs for each network real-
network have made an update. In order to investigate thization, in such a way thatx N~1x 10°.
effect of the topological structure of the population on the We have studied the distribution of the agents with effi-
dynamics of efficiencies, we fix the value of parametgrs ciencyh at a set of timed. Figure 1 shows the normalized
and g in the present model. Without loss of generality, wedistribution P(h,t) as a function of efficiency for the sys-

FIG. 1. Efficiency distributionP(h) for coordination number

Ill. RESULTS AND DISCUSSION
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t FIG. 3. (8 The asymptotic growth rate of the average effi-
. ) ) ciency and(b) the asymptotic efficiency fluctuation* as a func-
_ FIG. 2. Average efficiencyh(t)) as a function of timet for o of disorders of the network. From left to right, the system size
disorders¢=0.05(a), 0.175(b), and 0.30(c). The size of the sys- is N=1 000 000, 20 000, 5000, 2000, 1000, 500, and 200.
tem isN=1000.

tem with sizeN = 1000 at three different values @f. It can the regime where the efficiency distribution is stationary, to
be seen from Fig. 1 that as disordgrincreases, distribution 1€ regime where the efficiency increases with time at a cer-
P(h,t) has a large change. As the disorder is srtaly., & tain intermediate value ap. To charactenzg this transition,
=0.05), the distribution, approximately, has an exponentialV® calculate growth rate of average efficiencyh(t)) per
form and is independent of time[see Fig. 1a)]. In this adentin the long-time limit, where

regime, because of the lack of the long-range link, the in-

e o d(h(t))
crease of efficiency due to the communications among v=
agents is small and it is comparable to the reduction of effi- dt
ciency. The distribution approximately reaches a time-
independent steady state, and thereby, the average efficienegd
per agent approaches a low constant in the long fisee N o
Fig. 2(a)]. This kind of steady. exponentia}l distribution has (h(t))= i E hi(t)= 2 hP(h,t). )
been predicted by the mean-field theory in H&f]. How- N =1 h=0
ever, as the disorder is large.g.,»=0.30), the distribution
has a Gaussian form and the position of its maximum inAs the disorder is small, efficiency distributida(h,t) is
creases with time [see Fig. {c)]. In this situation, the exis- independent of timéand can be rewritten &(h). Thus, we
tence of a large number of long-range links makes the coophave (h(t))—const. andv—0 in the long-time limit. For
eration and interchange very easy and effective, so eadarge ¢, the Gaussian-type efficiency distribution shifts to
agent can reach the efficiency of the better agents. Thus, tHarge efficiency with the increase of tinieTherefore, aver-
distribution has a Gaussian form and the efficiency of agentgge efficiency(h(t)) is a function of timet and the corre-
will linearly increase with timet [see Fig. 2c)], which is  sponding growth rate >0.
consistent with the mean-field analysis in Rg0]. In the Figure 3a) shows growth rate of the average efficiency
case of intermediate disordée.g., $=0.175), just before as a function of disorde# for several systems with siz¢
the Gaussian peak begins to appear, the distribution of effranging from 200 to 19 It can be seen from this figure that
ciency follows a power-law dependence, i.2(h)~h~* there exists a transition at a certain valg(N) for each
with @~ 1.0, over a certain region of efficiencies for differ- system. As¢p<¢(N), growth ratev is equal to zero; ag
ent times, as shown in Fig(4). > ¢.(N), v increases rapidly witlp. As ¢~ ¢:(N), growth

The appearance of a well-defined power-law distributionratev transits from zero to a finite value, which corresponds
indicates that there may exist a critical phase transition fronto the transition of the system from a stagnant phase to a

@
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growing one. This transition can be also characterized by y ' y '
efficiency fluctuatiorw of the system, which corresponds to

the nonuniform degree of efficiencies in the system. Effi- 031
ciency fluctuationw(t) is expressed as @)
0.2}
1 N =
wA(t)= = 2 [hi(t)—(h(1)]2. e %
N i=1 -
Efficiency fluctuationw(t) tends to a constanv* ={w(t 0.1

—om)) in the long-time limit. Figure &) shows the
asymptotic valuev* as a function of disordeg for several
systems with siz&l ranging from 200 to 19 From Fig. 3b)

we can see that fluctuation* also shows a transition behav- 107" 3
ior similar to that of growth rate. As ¢<@.(N), fluctua- i

tion w* takes a small value of about 1.0; &> ¢ (N), %’
fluctuationw* becomes the maximum, close to 8.0; és ¥ 2
~ ¢:(N), fluctuationw* sharply jumps from a small value go 10

to the maximum one. The results in Fig. 3 confirm that the =
present efficiency model exhibits a delocalization transition
from a stationary phase to a growing one of efficiencies ata 3L
certain intermediateb value. 102 — 103 — 104 — 105 — 106
Figure 3 also shows that critical poing.(N) obtained N
from the finite-size systems are dependent on kizd sys-
tems. The apparent critical poit(N) in a finite-size sys- FIG. 4. (a) Critical disorderg(N) for finite-size systems as a
tem shows a deviation from the true critical valge(), function of system sizé\ on a log-log plot.(b) Deviation ¢.(N)
which corresponds to the critical point for the system with— ¢.(«) from the true critical value as a function of sideon a
sizeN—oo. Smaller the system sizé is, smoother the tran- log-log plot, whereg(«) is chosen to be 0.098. The symbols are
sition of the curve is, and larger the deviatiap(N) the simulation results, and the line is the least-square fit to the data.
— ¢.(). To obtain the true critical poinp.(«), we employ
the finite-size analysis for the obtained data. From Fi),3 €pidemic dynamics, rumor propagation, and the game of Life
we can estimate critical valuas.(N) for the systems with in the small-world network27-29. It is well known that the
different sizes corresponding to the inflexions of the curvesgeometrical properties, such as the average shortest path
The results of¢.(N) are shown in Fig. @) on a log-log €(¢), show a first-order transition at disorder=0 [24—
plot. It can be seen from Fig.(d that with the increase of 26]. Therefore, the present transition occurringpat- 0 can-
system sizeN, critical value$.(N) decreases and tends to a not be attributed to the purely geometrical properties of the
constant value that corresponds to the true critical valu@etwork, and the specific dynamical characters of the model
¢.() for the infinite-size system. According to the finite- should be taken into account. In the following, we try to
size effects of the systems, the apparent critical poifiN) understand the present critical behavior from the dynamical
and true critical pointp () are expected to scale with size properties of the model.
N as[34] First, we write down the evolution equation for average
efficiency(h(t)) per agent. In the present model, the contri-
Be(N) = () ~N~, (4 butions to the time evolution ofh(t)) come from three

_ - ) _ parts: increase due to learning from its linked agents, in-

wherev is the critical shift exponent. To obtain the value of crease due to innovation, and decrease due to unforeseen

true critical point¢.() and critical exponent, Fig. 4b)  problems. Thus growth rate of the average efficiency can
shows critical deviatiorp.(N) — ¢¢(=) as a function of sys-  pe expressed 480]

tem sizeN on a log-log plot. When the true critical value is

chosen to bap.()=0.098, we obtain the best power-law d(h(t)) Aw(t)+p—qgs(t)

relation of the data by using Edq4) [see Fig. 4b)]. The v()=—gr = 1+p+q ' ®)

excellent linear dependence in Figb# indicates that the

finite-size scaling relation Ed4) is reasonable for describ- whereA is a proportional factor concerned with disordgr

ing the present simulation results. From Figb)dwe also  ands(t) is the probability that an agent has a nonzero effi-

obtain critical exponent=1.75 by means of the least-square ciency. The first term on the right-hand side of the above

fit to the data. equation indicates the increase in efficiency per agent due to
The obtained data show that there exists a phase transitiadhe fact that each agent tries to equal its efficiency to that of

in the model of dynamics of efficiency at a finite disorder  a better performing agent, which is proportional to the non-

of the network. The finite-size scaling analysis supports theiniform degreew* of efficiencies among agents. The second

presence of the critical phenomenon at fingig. This kind  term represents the increase in efficiency per agent due to the

of critical behavior is also found in other systems such asnnovation of each agent. The last term quantifies the loss in

016107-4



CRITICAL BEHAVIOR OF EFFICIENCY DYNAMICS IN . .. PHYSICAL REVIEW E68, 016107 (2003

efficiency per agent due to some unforeseen problems, takingge efficiency distribution has a Gaussian form Bh)
into account the fact that the reduction can take place from-exg —(h—hg)%A?] with a finite width A [30]. We call this

an agent only if the agent has a nonzero efficiency. Substihase the “growing” phase. In this phase, the correlations

tuting the values op andq, Eg. (5) becomes betweenh;’s of different agents approximate to zero and the
efficiency of each agent increases independel@@j, This
o(t)= %[2AW('[)+3— 15s(1)]. 6) may lead to thep-independent efficiency fluctuatiom* .

IV. CONCLUSIONS
From Eq.(6) we can see that there should be a critical tran- ) . ) . .
sition at an intermediate disordefr, of the network. As¢ _ We investigate a simple model of the dynamics of effi-
<., factor A is small because of finite communication Ci€ncies of competing agents in a smal_l-world net.wo_rk. The
among agents. The efficiencies of all the agents are not higlieSults show that there exists a delocalizationdepinning
and the corresponding fluctuation(t) is also small. In this Phase transition from a stagnant phase to a growing one at a
regime, one can expect that in the long-time litit s, the finite disorder¢. of the.n.etwork. Above the CI‘ItIC6.|. po!nt
first two terms and the last term on the right-hand side of th¢?> ¢, the average efficiency increases linearly with time;

above equation will cancel each other and the probabilitP€lOW it (4= ) the system is stagnant, i.e., the efficiency
with nonzero efficiency reaches the asymptotic time-distribution becomes stationary in the long-time limit and the

independent value, i.es=(2Aw* +3)/15. This indicates 2average efficiency per agent approaches a constant. By
that growth rater=0 and average efficiency per ageht means of a finite-size scaling analysis, we obtain critical
becomes a constant in the long-time limit. CorrespondinglyPCint ¢¢=0.098 for the given system. The present transition
the steady-state efficiency distribution has an exponentid?Ccuring at a finite disorder is different from the transition
form of P(h)~exp(—h/h*) with a finite first momenth) related to the geometrical properties of the network, which
[33]. We call this phase the “stagnant” phase. However, ad@Kes place a$=0. We predict this transition occurring at a
&> ¢., the proportional factoA andw are large due to the finite disorder by counting in _b_oth the g(_eometncal properties
abundant long-range links: after a long time,attains the of the network and the specific dynamical properties of the

stable valuev* and the probability with nonzero efficiency MOdel
reaches the maximum value &£ 1, but the last term on the
right-hand side of Eq(6) is still less than the sum of the first

two terms. In this regime, growth rate=[ 2Aw* —12)]/15 This work was supported by the National Natural Science
and average efficiency per agefti(t)) increases linearly Foundation of China Grant No. 10274056 and Fund of the
with timet, i.e.,(h(t))=[2Aw* —12)t/15. Correspondingly, Education Ministry of China.
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