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Critical behavior of efficiency dynamics in small-world networks

Sheng-You Huang, Xian-Wu Zou,* Zhi-Jie Tan, Zhi-Gang Shao, and Zhun-Zhi Jin
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

~Received 8 March 2003; published 11 July 2003!

Some dynamical processes in a small-world network shows a critical transition at a finite disorderfc of the
network, in contrast with the geometrical properties that exhibit the critical behavior atfc50. Although it has
been pointed out in previous works that the transition is related to the structural properties of the network, it is
still not very clear why the transition occurs atfcÞ0. In this paper we present a simple social model of
efficiency dynamics in small-world networks, which also shows a transition atfc.0. We obtain the critical
point with fc'0.098 from the finite-size analysis. It is found that both the geometrical properties of the
network and the specific dynamical characters of the model contribute to the critical transition. This work is
useful for understanding this kind of transition occurring in many dynamical processes in small-world net-
works.
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I. INTRODUCTION

Many social, biological, and communication systems c
be cast into the form of complex networks@1,2#. Various
models have been developed in order to describe the s
ture and properties of these networks@1–6#. Among these
models, the small-world network, which was introduced
Watts and Strogatz@4,5#, has recently attracted a great de
of attention@7–12#. The small-world network is based on
locally connected regular lattice in which a fractionf of the
links between neighboring sites are randomly replaced
new random links, thus creating long-range ‘‘shortcuts.’’ P
rameterf can be used to characterize the disorder degre
the network. The small-world model captures two spec
features of real neural, social, and technological netwo
@4#. On one hand, it has a relatively large clustering coe
cient, like regular lattices. On the other hand, it has a v
small average shortest path through the network between
two nodes, like random graphs.

Small worlds may play an important role in the study
the influence of the network structure upon the dynamics
many social processes, such as disease spreading, form
of public opinion, distribution of wealth, etc.@13–18#. Some
efforts have been directed to investigating the structures
properties of small-world networks, such as scaling, perc
tion, etc. @19–23#. It has been shown that the geometric
properties, as well as certain statistical-mechanics proper
show a first-order transition at disorderf50 in the limit of
large systems,N→` @24–26#. There exists a typical length
N* (f);f21/d in the small-world network, whered is the
dimension of the basic regular lattice. For the system w
size aboveN* , the network is indeed a small world an
below N* it behaves as a regular lattice@26#. That is, any
finite value of the disorder induces the small-world behav

Recently, several works@27–29# have shown that som
dynamical processes in the small-world network exhibit
critical transition at a finite value off, which is distin-
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guished from the transition occurring atf50. Kuperman
and Abramson have studied an epidemiological model i
small-world network@27#. It shows that there exists a trans
tion from a fluctuating epidemic state of low infection to
self-sustained oscillation one at a finite value off. Zanette
has studied the critical behavior of rumor propagation in
small-world network@28#. The transition occurs between
regime where the rumor ‘‘dies’’ in a small neighborhood
its origin and a regime where it spreads over a finite fract
of the whole population. In a very recent paper by our gro
we have also found that there exists a transition from
sparse-inactive state to a dense-active one of ‘‘life’’ at a fin
disorderf in a small-world network@29#. All these dynami-
cal processes in a small-world network all show a critic
transition atfcÞ0. Why does the transition take place at
intermediatef value but not atf50? This is still not very
clear up to date. In the previous works, an explanation ab
this transition involves only the geometrical properties of t
network, such as the clustering coefficient@27–29#. In a re-
cent work @28#, it is suggested that in addition to the ge
metrical properties of the network, the specific dynami
characters of the studied model must be taken into accou
explain the origin of the transition.

In this paper we use a simple model that describes
dynamics of efficiencies of competing agents@30# in a small-
world network. Agents communicate, leading to the incre
of efficiencies of underachievers, and the efficiency of ea
agent can increase or decrease irrespective of other ag
The model can also be considered as a polynuclear gro
model with desorption, where the degrees of freedom are
heights of a growing interface@31–33#. The model shows a
delocalization transition from a stagnant phase to a grow
one at a finite disorder of the network. By taking into a
count the specific dynamical properties of the model,
predict the appearance of this critical transition. The pres
work will be useful for understanding the critical transitio
appearing in many dynamical processes at a certain fi
disorder in a small-world network.

II. MODEL AND METHOD

In the present model, the evolution of the efficiencies
similar to that used in Ref.@30#, which may mimic the dy-
d-
©2003 The American Physical Society07-1
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namics of efficiencies of competing agents such as airlin
travel agencies, insurance companies, etc. The efficienc
each agent is expressed as a single non-negative numbe
efficiency of every agent can, independent of other age
increase or decrease stochastically by a certain amount w
we set equal to unity. The interactions between the agen
the population are described by a small-world network. T
vertices denote the agents and the links represent the
ness relationships between subjects. The efficiency of
agent can only be affected by its linked agents. As in
Watts and Strogatz model@4#, the small worlds used in this
work are random networks built upon a topological ring w
N vertices and coordination number 2K. Each link, connect-
ing a vertex to its neighbor in the clockwise sense, is th
rewired at random, with probabilityf, to any vertex of the
systems. With probability (12f), the original link is pre-
served. Self-connections and multiple connections are
hibited. With this procedure, we obtain a regular lattice
f50, and progressively random graphs forf.0. The long-
range links that appear at anyf.0 trigger the small-world
phenomenon. Atf51 all the links have been rewired an
the system is similar to a completely random network.
avoid producing disconnected graphs, we have choseK
52 in the present model.

Now we define the efficiency model as follows. Each v
tex i in the network represents an agent which is charac
ized by a non-negative integerhi(t). This integer stands fo
their efficiency level. That is, the higherhi is, the more ad-
vanced~efficiently speaking! the agent is. We assume th
the interaction equates the efficiencies of underachiever
the efficiencies of better performing agents. Similar to R
@30#, the calculated results are expected to be independe
the initial conditions for the present model. For simplici
we choose the efficiency of each agenthi(0)50 as the initial
conditions. Monte Carlo~MC! simulations have been used
study the evolution of the efficiencies ofN agents in the
small world network. At each MC step, agenti is selected at
random and updates the agent’s efficiency level as follow

~i! hi(t)→max@hi(t),hj(t)# with probability 1/(11p1q),
where agentj is one of the agents that are linked to ageni.
This move is due to the fact that each agent tries to equa
efficiency to that of a better performing agent in order to s
competitive.

~ii ! hi(t)→hi(t)11 with probability p/(11p1q). This
incorporates the fact that each agent can increase his
ciency, say due to innovations, irrespective of other agen

~iii ! hi(t)→hi(t)21 with probabilityq/(11p1q). This
corresponds to the fact that each agent can lose his effici
due to unforeseen problems such as labor strikes. Note, h
ever, that sincehi(t)>0, this move can occur only whe
hi(t)>1.

Then, the evolution of efficiency comes into the next M
step. After each MC step the ‘‘time’’ is increased by 1/N,
such that after one time step, on the average, all agents in
network have made an update. In order to investigate
effect of the topological structure of the population on t
dynamics of efficiencies, we fix the value of parameterp
and q in the present model. Without loss of generality, w
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choosep53/2 and q515/2, where the mean-field theor
predicts a growing phase of efficiencies@30#.

III. RESULTS AND DISCUSSION

We have performed extensive numerical simulations
investigate the dynamics of efficiency in the small-world n
works with sizeN ranging from 200 to 1 000 000 and rewi
ing probabilitiesfP@0,1#. To reduce the effect of fluctua
tion on calculated results, for every system with sizeN, the
calculated results are averaged over bothn different network
realizations and 10 independent runs for each network r
ization, in such a way thatn3N'13105.

We have studied the distribution of the agents with e
ciencyh at a set of timest. Figure 1 shows the normalize
distributionP(h,t) as a function of efficiencyh for the sys-

FIG. 1. Efficiency distributionP(h) for coordination number
2K54 and disorderf50.05 ~a!, 0.175~b!, and 0.30~c!. Different
symbols correspond to timest5103 ~square!, 104 ~circle!, and 105

~triangle!. The dashed line in~b! has a slope of21.0. Note care-
fully the different scales of the three plots. The size of the system
N51000.
7-2
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tem with sizeN51000 at three different values off. It can
be seen from Fig. 1 that as disorderf increases, distribution
P(h,t) has a large change. As the disorder is small~e.g.,f
50.05), the distribution, approximately, has an exponen
form and is independent of timet @see Fig. 1~a!#. In this
regime, because of the lack of the long-range link, the
crease of efficiency due to the communications amo
agents is small and it is comparable to the reduction of e
ciency. The distribution approximately reaches a tim
independent steady state, and thereby, the average effic
per agent approaches a low constant in the long time@see
Fig. 2~a!#. This kind of steady exponential distribution ha
been predicted by the mean-field theory in Ref.@33#. How-
ever, as the disorder is large~e.g.,f50.30), the distribution
has a Gaussian form and the position of its maximum
creases with timet @see Fig. 1~c!#. In this situation, the exis-
tence of a large number of long-range links makes the co
eration and interchange very easy and effective, so e
agent can reach the efficiency of the better agents. Thus
distribution has a Gaussian form and the efficiency of age
will linearly increase with timet @see Fig. 2~c!#, which is
consistent with the mean-field analysis in Ref.@30#. In the
case of intermediate disorder~e.g., f50.175), just before
the Gaussian peak begins to appear, the distribution of
ciency follows a power-law dependence, i.e.,P(h);h2a

with a'1.0, over a certain region of efficiencies for diffe
ent times, as shown in Fig. 1~b!.

The appearance of a well-defined power-law distribut
indicates that there may exist a critical phase transition fr

FIG. 2. Average efficiencŷh(t)& as a function of timet for
disordersf50.05 ~a!, 0.175~b!, and 0.30~c!. The size of the sys-
tem isN51000.
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the regime where the efficiency distribution is stationary,
the regime where the efficiency increases with time at a c
tain intermediate value off. To characterize this transition
we calculate growth ratev of average efficiencŷh(t)& per
agent in the long-time limit, where

v[
d^h~ t !&

dt
~1!

and

^h~ t !&5
1

N (
i 51

N

hi~ t !5 (
h50

`

hP~h,t !. ~2!

As the disorder is small, efficiency distributionP(h,t) is
independent of timet and can be rewritten asP(h). Thus, we
have ^h(t)&→const. andv→0 in the long-time limit. For
large f, the Gaussian-type efficiency distribution shifts
large efficiency with the increase of timet. Therefore, aver-
age efficiencŷ h(t)& is a function of timet and the corre-
sponding growth ratev.0.

Figure 3~a! shows growth ratev of the average efficiency
as a function of disorderf for several systems with sizeN
ranging from 200 to 106. It can be seen from this figure tha
there exists a transition at a certain valuefc(N) for each
system. Asf,fc(N), growth ratev is equal to zero; asf
.fc(N), v increases rapidly withf. As f'fc(N), growth
ratev transits from zero to a finite value, which correspon
to the transition of the system from a stagnant phase t

FIG. 3. ~a! The asymptotic growth ratev of the average effi-
ciency and~b! the asymptotic efficiency fluctuationw* as a func-
tion of disorderf of the network. From left to right, the system siz
is N51 000 000, 20 000, 5000, 2000, 1000, 500, and 200.
7-3
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growing one. This transition can be also characterized
efficiency fluctuationw of the system, which corresponds
the nonuniform degree of efficiencies in the system. E
ciency fluctuationw(t) is expressed as

w2~ t !5
1

N (
i 51

N

@hi~ t !2^h~ t !&#2. ~3!

Efficiency fluctuationw(t) tends to a constantw* 5^w(t
→`)& in the long-time limit. Figure 3~b! shows the
asymptotic valuew* as a function of disorderf for several
systems with sizeN ranging from 200 to 106. From Fig. 3~b!
we can see that fluctuationw* also shows a transition behav
ior similar to that of growth ratev. As f,fc(N), fluctua-
tion w* takes a small value of about 1.0; asf.fc(N),
fluctuation w* becomes the maximum, close to 8.0; asf
'fc(N), fluctuationw* sharply jumps from a small valu
to the maximum one. The results in Fig. 3 confirm that
present efficiency model exhibits a delocalization transit
from a stationary phase to a growing one of efficiencies a
certain intermediatef value.

Figure 3 also shows that critical pointsfc(N) obtained
from the finite-size systems are dependent on sizeN of sys-
tems. The apparent critical pointfc(N) in a finite-size sys-
tem shows a deviation from the true critical valuefc(`),
which corresponds to the critical point for the system w
sizeN→`. Smaller the system sizeN is, smoother the tran
sition of the curve is, and larger the deviationfc(N)
2fc(`). To obtain the true critical pointfc(`), we employ
the finite-size analysis for the obtained data. From Fig. 3~b!,
we can estimate critical valuesfc(N) for the systems with
different sizes corresponding to the inflexions of the curv
The results offc(N) are shown in Fig. 4~a! on a log-log
plot. It can be seen from Fig. 4~a! that with the increase o
system sizeN, critical valuefc(N) decreases and tends to
constant value that corresponds to the true critical va
fc(`) for the infinite-size system. According to the finite
size effects of the systems, the apparent critical pointfc(N)
and true critical pointfc(`) are expected to scale with siz
N as @34#

fc~N!2fc~`!;N21/n, ~4!

wheren is the critical shift exponent. To obtain the value
true critical pointfc(`) and critical exponentn, Fig. 4~b!
shows critical deviationfc(N)2fc(`) as a function of sys-
tem sizeN on a log-log plot. When the true critical value
chosen to befc(`).0.098, we obtain the best power-la
relation of the data by using Eq.~4! @see Fig. 4~b!#. The
excellent linear dependence in Fig. 4~b! indicates that the
finite-size scaling relation Eq.~4! is reasonable for describ
ing the present simulation results. From Fig. 4~b! we also
obtain critical exponentn.1.75 by means of the least-squa
fit to the data.

The obtained data show that there exists a phase trans
in the model of dynamics of efficiency at a finite disorderfc
of the network. The finite-size scaling analysis supports
presence of the critical phenomenon at finitefc . This kind
of critical behavior is also found in other systems such
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epidemic dynamics, rumor propagation, and the game of L
in the small-world network@27–29#. It is well known that the
geometrical properties, such as the average shortest
,̄(f), show a first-order transition at disorderf50 @24–
26#. Therefore, the present transition occurring atfcÞ0 can-
not be attributed to the purely geometrical properties of
network, and the specific dynamical characters of the mo
should be taken into account. In the following, we try
understand the present critical behavior from the dynam
properties of the model.

First, we write down the evolution equation for avera
efficiency^h(t)& per agent. In the present model, the cont
butions to the time evolution of̂h(t)& come from three
parts: increase due to learning from its linked agents,
crease due to innovation, and decrease due to unfore
problems. Thus growth ratev of the average efficiency ca
be expressed as@30#

v~ t ![
d^h~ t !&

dt
5

Aw~ t !1p2qs~ t !

11p1q
, ~5!

whereA is a proportional factor concerned with disorderf,
ands(t) is the probability that an agent has a nonzero e
ciency. The first term on the right-hand side of the abo
equation indicates the increase in efficiency per agent du
the fact that each agent tries to equal its efficiency to tha
a better performing agent, which is proportional to the no
uniform degreew* of efficiencies among agents. The seco
term represents the increase in efficiency per agent due to
innovation of each agent. The last term quantifies the los

FIG. 4. ~a! Critical disorderfc(N) for finite-size systems as a
function of system sizeN on a log-log plot.~b! Deviation fc(N)
2fc(`) from the true critical value as a function of sizeN on a
log-log plot, wherefc(`) is chosen to be 0.098. The symbols a
the simulation results, and the line is the least-square fit to the d
7-4
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efficiency per agent due to some unforeseen problems, ta
into account the fact that the reduction can take place fr
an agent only if the agent has a nonzero efficiency. Sub
tuting the values ofp andq, Eq. ~5! becomes

v~ t !5
1

20
@2Aw~ t !13215s~ t !#. ~6!

From Eq.~6! we can see that there should be a critical tra
sition at an intermediate disorderfc of the network. Asf
,fc , factor A is small because of finite communicatio
among agents. The efficiencies of all the agents are not h
and the corresponding fluctuationw(t) is also small. In this
regime, one can expect that in the long-time limitt→`, the
first two terms and the last term on the right-hand side of
above equation will cancel each other and the probab
with nonzero efficiency reaches the asymptotic tim
independent value, i.e.,s5(2Aw* 13)/15. This indicates
that growth ratev50 and average efficiency per agent^h&
becomes a constant in the long-time limit. Correspondin
the steady-state efficiency distribution has an exponen
form of P(h);exp(2h/h* ) with a finite first moment̂ h&
@33#. We call this phase the ‘‘stagnant’’ phase. However,
f.fc , the proportional factorA andw are large due to the
abundant long-range links; after a long time,w attains the
stable valuew* and the probability with nonzero efficienc
reaches the maximum value ofs51, but the last term on the
right-hand side of Eq.~6! is still less than the sum of the firs
two terms. In this regime, growth ratev5@2Aw* 212)]/15
and average efficiency per agent^h(t)& increases linearly
with time t, i.e.,^h(t)&5@2Aw* 212)t/15. Correspondingly,
-
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01610
ng
m
ti-

-

h,

e
y
-

y,
al

s

the efficiency distribution has a Gaussian form ofP(h)
;exp@2(h2h0)

2/D2# with a finite widthD @30#. We call this
phase the ‘‘growing’’ phase. In this phase, the correlatio
betweenhi ’s of different agents approximate to zero and t
efficiency of each agent increases independently@30#, This
may lead to thef-independent efficiency fluctuationw* .

IV. CONCLUSIONS

We investigate a simple model of the dynamics of e
ciencies of competing agents in a small-world network. T
results show that there exists a delocalization~or depinning!
phase transition from a stagnant phase to a growing one
finite disorderfc of the network. Above the critical poin
f.fc , the average efficiency increases linearly with tim
below it (f<fc) the system is stagnant, i.e., the efficien
distribution becomes stationary in the long-time limit and t
average efficiency per agent approaches a constant.
means of a finite-size scaling analysis, we obtain criti
point fc.0.098 for the given system. The present transit
occurring at a finite disorder is different from the transitio
related to the geometrical properties of the network, wh
takes place atf50. We predict this transition occurring at
finite disorder by counting in both the geometrical propert
of the network and the specific dynamical properties of
model.
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